Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540756

RESUMO

Sodin 5 is a type 1 ribosome-inactivating protein isolated from the seeds of Salsola soda L., an edible halophytic plant that is widespread in southern Europe, close to the coast. This plant, known as 'agretti', is under consideration as a new potential crop on saline soils. Considering a possible defence role of sodin 5 in the plant, we report here its antifungal activity against different halophilic and halotolerant fungi. Our results show that sodin 5 at a concentration of 40 µg/mL (1.4 µM) was able to inhibit the growth of the fungi Trimmatostromma salinum (35.3%), Candida parapsilosis (24.4%), Rhodotorula mucilaginosa (18.2%), Aspergillus flavus (12.2%), and Aureobasidium melanogenum (9.1%). The inhibition observed after 72 h was concentration-dependent. On the other hand, very slight growth inhibition was observed in the fungus Hortaea werneckii (4.2%), which commonly inhabits salterns. In addition, sodin 5 showed a cytotoxic effect on the Sf9 insect cell line, decreasing the survival of these cells to 63% at 1.0 µg/mL (34.5 nM). Structural analysis of sodin 5 revealed that its N-terminal amino acid residue is blocked. Using mass spectrometry, sodin 5 was identified as a homologous to type 1 polynucleotide:adenosine glycosylases, commonly known as ribosome-inactivating proteins from the Amaranthaceae family. Twenty-three percent of its primary structure was determined, including the catalytic site.


Assuntos
Salsola , Saporinas/metabolismo , Salsola/metabolismo , Fungos/metabolismo , Antifúngicos/metabolismo , Sementes/química , Proteínas de Plantas/química
2.
Front Biosci (Landmark Ed) ; 29(2): 51, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38420825

RESUMO

BACKGROUND: Ribosome inactivating proteins (RIPs) are N-glycosylases found in various plants that are able to specifically and irreversibly inhibit protein translation, thereby leading to cell death. Their cytotoxic properties have attracted attention in the medical field in the context of developing new anticancer therapies. Quinoin is a novel toxic enzyme obtained from quinoa seeds and classified as a type 1 RIP (Chenopodium quinoa Willd.). Recently, quinoin was found to be cytotoxic to normal fibroblasts and keratinocytes in vitro, as well as to several tumor cell lines. METHODS: The aim of this study was to evaluate the in vitro and in vivo genotoxicity of quinoin in a zebrafish model. We evaluated its ability to induce DNA fragmentation, genomic instability, and reactive oxygen species (ROS) generation by means of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction, randomly amplified polymorphic DNA (RAPD) Polymerase Chain Reaction (PCR) technique, and dichlorofluorescine (DCF) assay, respectively. RESULTS: Quinoin was found to cause genomic damage in zebrafish, as shown by DNA fragmentation, polymorphic variations leading to genomic instability, and oxidative stress. Interestingly, longer quinoin treatment caused less damage than shorter treatments. CONCLUSIONS: This study demonstrated ROS-mediated genotoxicity of quinoin toward the zebrafish genome. The reduced damage observed after longer quinoin treatment could indicate the activation of detoxification mechanisms, activation of repair mechanisms, or the loss of protein activity due to enzymatic digestion. In order to clarify the genotoxic actions of quinoin, further investigations of the response pathways to DNA damage are needed. Overall, the ability of quinoin to cause breaks and instability in DNA, together with its clear cytotoxicity, make it an interesting candidate for the development of new drugs for cancer treatment.


Assuntos
Chenopodium quinoa , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chenopodium quinoa/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Saporinas/metabolismo , Dano ao DNA , Sementes/genética , Sementes/metabolismo , Instabilidade Genômica , DNA/metabolismo
3.
Sci Rep ; 13(1): 2091, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747030

RESUMO

The ribosome inactivating proteins (RIPs) efficiently decrease the microbial infections in plants. Momordica charantia MAP30 is a type I RIP that has not been investigated against plant viruses or bacteriophages. To evaluate of these activities, the recombinant MAP30 (rMAP30) was produced in the hairy roots of Nicotiana tabacum. Inoculation of 3 µg of transgenic total protein or 0.6 µg of rMAP30 against 0.1 µg of TMV reduced the leaf necrotic spots to 78.23% and 82.72%, respectively. The treatment of 0.1 µg of CMV with rMAP30 (0.6 µg) showed the reduction in the leaf necrotic spots to 85.8%. While the infection was increased after rMAP30 dilution. In the time interval assays, the leaves were first inoculated with 1 µg of rMAP30 or 0.1 µg of purified TMV or CMV agent for 6 h, then virus or protein was applied in order. This led the spot reduction to 35.22% and 67% for TMV, and 38.61% and 55.31% for CMV, respectively. In both the pre- and co-treatments of 1:10 or 1:20 diluted bacteriophage with 15 µg of transgenic total protein, the number and diameter of the plaques were reduced. The results showed that the highest inhibitory effect was observed in the pre-treatment assay of bacteriophage with transgenic total protein for 24 h. The decrease in the growth of bacteriophage caused more growth pattern of Escherichia coli. The results confirm that rMAP30 shows antibacterial activity against Streptococcus aureus and E. coli, antifungal activity against Candida albicans, and antiviral activity against CMV and TMV. Moreover, rMAP30 exhibits anti-phage activity for the first time. According to our findings, rMAP30 might be a valuable preservative agent in foods and beverages in the food industry as well as an antiviral and antimicrobial mixture in agriculture.


Assuntos
Bacteriófagos , Infecções por Citomegalovirus , Vírus de Plantas , Humanos , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Saporinas/metabolismo , Escherichia coli/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Antivirais/farmacologia , Proteínas de Plantas/metabolismo
4.
J Neurochem ; 163(2): 149-167, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921478

RESUMO

Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers remains unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At 6 months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Postmortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1), and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor, and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.


Assuntos
Prosencéfalo Basal , Colina O-Acetiltransferase , Animais , Ratos , Prosencéfalo Basal/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos/farmacologia , Neurônios Colinérgicos/metabolismo , Citotoxinas , Imunoglobulina G , Ratos Wistar , RNA Mensageiro/análise , Saporinas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Fator de Crescimento Neural/biossíntese
5.
Biol Psychiatry ; 92(9): 709-721, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35965105

RESUMO

BACKGROUND: Anxiety disorders are associated with an altered perception of the body's internal state. Therefore, understanding the neuronal basis of interoception can foster novel anxiety therapies. In rodents, the feeding status bidirectionally modulates anxiety-like behavior but how the sensing of gastrointestinal state affects anxiety remains unclear. METHODS: We combined chemogenetics, neuropharmacology, and behavioral approaches in male and female rats to test whether vagal afferents terminating in the gastrointestinal tract mediate feeding-induced tuning of anxiety. Using saporin-based lesions and transcriptomics, we investigated the chronic impact of this gut-brain circuit on anxiety-like behavior. RESULTS: Both feeding and selective chemogenetic activation of gut-innervating vagal afferents increased anxiety-like behavior. Conversely, chemogenetic inhibition blocked the increase in anxiety-like behavior induced by feeding. Using a selective saporin-based lesion, we demonstrate that the loss of gut-innervating vagal afferent signaling chronically reduces anxiety-like behavior in male rats but not in female rats. We next identify a vagal circuit that connects the gut to the central nucleus of the amygdala, using anterograde transsynaptic tracing from the nodose ganglia. Lesion of this gut-brain vagal circuit modulated the central amygdala transcriptome in both sexes but selectively affected a network of GABA (gamma-aminobutyric acid)-related genes only in males, suggesting a potentiation of inhibitory control. Blocking GABAergic signaling in the central amygdala re-established normal anxiety levels in male rats. CONCLUSIONS: Vagal sensory signals from the gastrointestinal tract are critical for baseline and feeding-induced tuning of anxiety via the central amygdala in rats. Our results suggest vagal gut-brain signaling as a target to normalize interoception in anxiety disorders.


Assuntos
Ansiedade , Nervo Vago , Animais , Retroalimentação , Feminino , Trato Gastrointestinal , Masculino , Vias Neurais/fisiologia , Ratos , Saporinas/metabolismo , Nervo Vago/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409209

RESUMO

Histone deacetylase (HDAC) inhibitors are novel chemotherapy agents with potential utility in the treatment of neuroblastoma, the most frequent solid tumor of childhood. Previous studies have shown that the exposure of human neuroblastoma cells to some HDAC inhibitors enhanced the expression of the common neurotrophin receptor p75NTR. In the present study we investigated whether the upregulation of p75NTR could be exploited to render neuroblastoma cells susceptible to the cytotoxic action of an anti-p75NTR antibody conjugated to the toxin saporin-S6 (p75IgG-Sap). We found that two well-characterized HDAC inhibitors, valproic acid (VPA) and entinostat, were able to induce a strong expression of p75NTR in different human neuroblastoma cell lines but not in other cells, with entinostat, displaying a greater efficacy than VPA. Cell pretreatment with entinostat enhanced p75NTR internalization and intracellular saporin-S6 delivery following p75IgG-Sap exposure. The addition of p75IgG-Sap had no effect on vehicle-pretreated cells but potentiated the apoptotic cell death that was induced by entinostat. In three-dimensional neuroblastoma cell cultures, the subsequent treatment with p75IgG-Sap enhanced the inhibition of spheroid growth and the impairment of cell viability that was produced by entinostat. In athymic mice bearing neuroblastoma xenografts, chronic treatment with entinostat increased the expression of p75NTR in tumors but not in liver, kidney, heart, and cerebellum. The administration of p75IgG-Sap induced apoptosis only in tumors of mice that were pretreated with entinostat. These findings define a novel experimental strategy to selectively eliminate neuroblastoma cells based on the sequential treatment with entinostat and a toxin-conjugated anti-p75NTR antibody.


Assuntos
Antineoplásicos , Imunotoxinas , Neuroblastoma , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Imunotoxinas/farmacologia , Camundongos , Neuroblastoma/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Saporinas/metabolismo , Regulação para Cima , Ácido Valproico/farmacologia
7.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1138-1148, 2022 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-35355480

RESUMO

Loofah seeds ribosome inactivating protein luffin-α was fused with a tumor-targeting peptide NGR to create a recombinant protein, and its inhibitory activity on tumor cells and angiogenesis were assessed. luffin-α-NGR fusion gene was obtained by PCR amplification. The fusion gene was ligated with pGEX-6p-1 vector to create a recombinant plasmid pGEX-6p-1/luffin-α-NGR. The plasmid was transformed into E. coli BL21, and the target protein was isolated and purified by GST affinity chromatography. The luffin-α-NGR fusion gene with a full length of 849 bp was successfully obtained, and the optimal soluble expression of the target protein was achieved under the conditions of 16 ℃, 0.5 mmol/L IPTG after 16 h induction. SDS-PAGE and Western blotting confirmed the recombinant protein has an expected molecular weight of 56.6 kDa. Subsequently, the recombinant protein was de-tagged by precision protease digestion. The inhibitory effects of the recombinant protein on liver tumor cells HepG2 and breast cancer cells MDA-MB-231 were significantly stronger than that of luffin-α. The Transwell and CAM experiment proved that the recombinant protein luffin-α-NGR also had a significant inhibitory effect on tumor cells migration and neovascularization. The inhibitory activity on tumor cells and angiogenesis of the recombinant luffin-α-NGR protein lays a foundation for the development of subsequent recombinant tumor-targeting drugs.


Assuntos
Escherichia coli , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saporinas/genética , Saporinas/metabolismo
8.
Biomed Chromatogr ; 36(1): e5235, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34553391

RESUMO

Dingkun Dan (DKD), a reputable traditional Chinese medicine formula, has been used to treat gynecological diseases and showed significant clinical effects since ancient times. However, the application and development of DKD are seriously hampered by the unclear active substances. Structural characterization of compounds absorbed in vivo and their corresponding metabolites is significant for clarifying the pharmacodynamic material basis. In this study, an integrated strategy using ultra-performance liquid chromatography, coupled with quadrupole time-of-flight mass spectrometry and UNIFI™ software, was used to identify prototypes and metabolites after oral administration of DKD in rats. As a result, a total of 261 compounds, including 140 prototypes and 121 metabolites, were tentatively characterized in rat plasma, urine, and feces. The metabolic pathways of prototypes have been studied to clarify their possible transformation process in vivo. Moreover, an in vitro metabolism study was applied for verifying the metabolites under simulating the metabolic environment in vivo. This first systematic metabolic study of DKD is important for elucidating the metabolites and metabolic pathways and could provide a scientific basis for explaining the integrative mechanism in further pharmacology study.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas/métodos , Administração Oral , Alcaloides/análise , Alcaloides/química , Alcaloides/metabolismo , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Redes e Vias Metabólicas , Ratos , Saporinas/análise , Saporinas/química , Saporinas/metabolismo
9.
Chinese Journal of Biotechnology ; (12): 1138-1148, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927769

RESUMO

Loofah seeds ribosome inactivating protein luffin-α was fused with a tumor-targeting peptide NGR to create a recombinant protein, and its inhibitory activity on tumor cells and angiogenesis were assessed. luffin-α-NGR fusion gene was obtained by PCR amplification. The fusion gene was ligated with pGEX-6p-1 vector to create a recombinant plasmid pGEX-6p-1/luffin-α-NGR. The plasmid was transformed into E. coli BL21, and the target protein was isolated and purified by GST affinity chromatography. The luffin-α-NGR fusion gene with a full length of 849 bp was successfully obtained, and the optimal soluble expression of the target protein was achieved under the conditions of 16 ℃, 0.5 mmol/L IPTG after 16 h induction. SDS-PAGE and Western blotting confirmed the recombinant protein has an expected molecular weight of 56.6 kDa. Subsequently, the recombinant protein was de-tagged by precision protease digestion. The inhibitory effects of the recombinant protein on liver tumor cells HepG2 and breast cancer cells MDA-MB-231 were significantly stronger than that of luffin-α. The Transwell and CAM experiment proved that the recombinant protein luffin-α-NGR also had a significant inhibitory effect on tumor cells migration and neovascularization. The inhibitory activity on tumor cells and angiogenesis of the recombinant luffin-α-NGR protein lays a foundation for the development of subsequent recombinant tumor-targeting drugs.


Assuntos
Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Plasmídeos , Proteínas Recombinantes/farmacologia , Saporinas/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445686

RESUMO

Quinoin is a type 1 ribosome-inactivating protein (RIP) we previously isolated from the seeds of pseudocereal quinoa (Chenopodium quinoa) and is known as a functional food for its beneficial effects on human health. As the presence of RIPs in edible plants could be potentially risky, here we further characterised biochemically the protein (complete amino acid sequence, homologies/differences with other RIPs and three-dimensional homology modeling) and explored its possible defensive role against pathogens. Quinoin consists of 254 amino acid residues, without cysteinyl residues. As demonstrated by similarities and homology modeling, quinoin preserves the amino acid residues of the active site (Tyr75, Tyr122, Glu177, Arg180, Phe181 and Trp206; quinoin numbering) and the RIP-fold characteristic of RIPs. The polypeptide chain of quinoin contains two N-glycosylation sites at Asn115 and Asp231, the second of which appears to be linked to sugars. Moreover, by comparative MALDI-TOF tryptic peptide mapping, two differently glycosylated forms of quinoin, named pre-quinoin-1 and pre-quinoin-2 (~0.11 mg/100 g and ~0.85 mg/100 g of seeds, respectively) were characterised. Finally, quinoin possesses: (i) strong antiviral activity, both in vitro and in vivo towards Tobacco Necrosis Virus (TNV); (ii) a growth inhibition effect on the bacterial pathogens of plants; and (iii) a slight antifungal effect against two Cryphonectria parasitica strains.


Assuntos
Chenopodium quinoa/enzimologia , Saporinas/metabolismo , Sequência de Aminoácidos/genética , Chenopodium quinoa/metabolismo , Proteínas de Plantas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/metabolismo , Saporinas/fisiologia , Sementes/enzimologia , Homologia de Sequência de Aminoácidos
11.
Toxins (Basel) ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065185

RESUMO

The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences.


Assuntos
Anti-Infecciosos/farmacologia , Histidina/química , Peptídeos/farmacologia , Transporte Proteico/efeitos dos fármacos , Anti-Infecciosos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Fluoresceínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luciferases/metabolismo , Peptídeos/química , Saporinas/metabolismo
12.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535383

RESUMO

Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can inhibit protein translation by depurinating rRNA. Most plant RIPs are synthesized with a leader sequence that sequesters the proteins to a cell compartment away from the host ribosomes. However, several rice RIPs lack these signal peptides suggesting they reside in the cytosol in close proximity to the plant ribosomes. This paper aims to elucidate the physiological function of two nucleocytoplasmic RIPs from rice, in particular, the type 1 RIP referred to as OsRIP1 and a presumed type 3 RIP called nuRIP. Transgenic rice lines overexpressing these RIPs were constructed and studied for developmental effects resulting from this overexpression under greenhouse conditions. In addition, the performance of transgenic seedlings in response to drought, salt, abscisic acid and methyl jasmonate treatment was investigated. Results suggest that both RIPs can affect methyl jasmonate mediated stress responses.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/metabolismo , Saporinas/metabolismo , Estresse Fisiológico , Ácido Abscísico/química , Acetatos/metabolismo , Ciclopentanos/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Oxilipinas/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , Ribossomos/metabolismo , Sais , Plântula/metabolismo
13.
Dev Neurobiol ; 81(1): 22-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289343

RESUMO

Motoneuron loss is a severe medical problem that can result in loss of motor control and eventually death. We have previously demonstrated that partial motoneuron loss can result in dendritic atrophy and functional deficits in nearby surviving motoneurons, and that an androgen-dependent effect of exercise following injury can be neuroprotective against this dendritic atrophy. In this study, we explored where the necessary site of androgen action is for exercise-driven neuroprotective effects on induced dendritic atrophy. Motoneurons innervating the vastus medialis muscles of adult male rats were selectively killed by intramuscular injection of cholera toxin-conjugated saporin. Simultaneously, some saporin-injected animals were given implants of the androgen receptor antagonist hydroxyflutamide, either directly at the adjacent vastus lateralis musculature ipsilateral to the saporin-injected vastus medialis or interscapularly as a systemic control. Following saporin injections, some animals were allowed free access to a running wheel attached to their home cages. Four weeks later, motoneurons innervating the same vastus lateralis muscle were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Dendritic arbor lengths of saporin-injected animals allowed to exercise were significantly longer than those not allowed to exercise. Androgen receptor blockade locally at the vastus lateralis muscle prevented the protective effect of exercise. These findings indicate that exercise following neural injury exerts a protective effect on motoneuron dendrites, which acts via androgen receptor action at the target muscle.


Assuntos
Androgênios , Atrofia/patologia , Peroxidase do Rábano Silvestre/metabolismo , Receptores Androgênicos , Saporinas/química , Medula Espinal/fisiologia , Animais , Toxina da Cólera , Dendritos/patologia , Peroxidase do Rábano Silvestre/química , Masculino , Neurônios Motores/patologia , Músculo Esquelético/patologia , Ratos , Ratos Sprague-Dawley , Saporinas/metabolismo
14.
Semin Cell Dev Biol ; 109: 125-143, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32859501

RESUMO

Receptor Interacting Protein Kinases (RIPKs) are cellular signaling molecules that are critical for homeostatic signaling in both communicable and non-communicable disease processes. In particular, RIPK1, RIPK2, RIPK3 and RIPK7 have emerged as key mediators of intracellular signal transduction including inflammation, autophagy and programmed cell death, and are thus essential for the early control of many diverse pathogenic organisms. In this review, we discuss the role of each RIPK in host responses to bacterial and viral pathogens, with a focus on studies that have used pathogen infection models rather than artificial stimulation with purified pathogen associated molecular patterns. We also discuss the intricate mechanisms of host evasion by pathogens that specifically target RIPKs for inactivation, and finally, we will touch on the controversial issue of drug development for kinase inhibitors to treat chronic inflammatory and neurological disorders, and the implications this may have on the outcome of pathogen infections.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Saporinas/metabolismo , Humanos
15.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228031

RESUMO

Cholesterol seems to play a central role in the augmentation of saporin-based immunotoxin (IT) cytotoxicity by triterpenoid saponins. Endolysosomal escape has been proposed as one mechanism for the saponin-mediated enhancement of targeted toxins. We investigated the effects of lipid depletion followed by repletion on Saponinum album (SA)-induced endolysosomal escape of Alexa Fluor labelled saporin and the saporin-based immunotoxin OKT10-SAP, directed against CD38, in Daudi lymphoma cells. Lipid deprived cells showed reduced SA-induced endolysosomal escape at two concentrations of SA, as determined by a flow cytometric method. The repletion of membrane cholesterol by low density lipoprotein (LDL) restored SA-induced endolysosomal escape at a concentration of 5 µg/mL SA but not at 1 µg/mL SA. When LDL was used to restore the cholesterol levels in lipid deprived cells, the SA augmentation of OKT10-SAP cytotoxicity was partially restored at 1 µg/mL SA and fully restored at 5 µg/mL SA. These results suggest that different mechanisms of action might be involved for the two different concentrations of SA and that endosomal escape may not be the main mechanism for the augmentation of saporin IT cytotoxicity by SA at the sub-lytic concentration of 1 µg/mL SA.


Assuntos
Colesterol/química , Endossomos/efeitos dos fármacos , Imunotoxinas/metabolismo , Lisossomos/efeitos dos fármacos , Saponinas/farmacologia , Saporinas/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , LDL-Colesterol/farmacologia , Relação Dose-Resposta a Droga , Endossomos/química , Endossomos/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Imunotoxinas/química , Linfócitos/química , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Saporinas/química , Ácidos Sulfônicos/química , Triterpenos/farmacologia
16.
Toxins (Basel) ; 12(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854372

RESUMO

Saporin, which is extracted from Saponaria officinalis, is a protein toxin that inactivates ribosomes. Saporin itself is non-selective toxin but acquires high specificity after conjugation with different ligands such as signaling peptides or antibodies to some surface proteins expressed in a chosen cell subpopulation. The saporin-based conjugated toxins were widely adopted in neuroscience as a convenient tool to induce highly selective degeneration of desired cell subpopulation. Induction of selective cell death is one of approaches used to model neurodegenerative diseases, study functions of certain cell subpopulations in the brain, and therapy. Here, we review studies where saporin-based conjugates were used to analyze cell mechanisms of sleep, general anesthesia, epilepsy, pain, and development of Parkinson's and Alzheimer's diseases. Limitations and future perspectives of use of saporin-based toxins in neuroscience are discussed.


Assuntos
Pesquisa Biomédica/métodos , Doenças do Sistema Nervoso/tratamento farmacológico , Saponaria , Saporinas/isolamento & purificação , Saporinas/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/metabolismo , Saporinas/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
17.
Immunol Cell Biol ; 98(3): 187-202, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916611

RESUMO

The stage-specific embryonic antigen-4 (SSEA-4) is a cell surface glycosphingolipid antigen expressed in early stages of human development. This surface marker is downregulated during the differentiation process but is found re-expressed in several types of tumors, including breast cancer. This feature makes SSEA-4 an attractive target for the development of therapeutic antibodies against tumors. In this work, we first studied the binding and intracellular fate of the monoclonal antibody MC-813-70 directed against SSEA-4. MC-813-70 was found to be rapidly internalized into triple-negative breast cancer cells following binding to its target at the plasma membrane, and to accumulate in acidic organelles, most likely lysosomes. Given the internalization feature of MC-813-70, we next tested whether the antibody was able to selectively deliver the saporin toxin inside SSEA-4-expressing cells. Results show that the immunotoxin complex was properly endocytosed and able to reduce cell viability of breast cancer cells in vitro, either alone or in combination with chemotherapeutic drugs. Our findings indicate that the MC-813-70 antibody has the potential to be developed as an alternative targeted therapeutic agent for cancer cells expressing the SSEA-4 glycolipid.


Assuntos
Imunotoxinas/farmacologia , Saporinas/farmacologia , Antígenos Embrionários Estágio-Específicos/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Imunotoxinas/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Saporinas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
18.
Phytochemistry ; 170: 112190, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31731237

RESUMO

Rice is the most important staple food in the world, but rice production is challenged by several biotic stress factors like viruses, bacteria, fungi and pest insects. One of the most notorious pest insects is Nilaparvata lugens, commonly known as the brown planthopper, which feeds on rice phloem sap and can cause serious damage to rice fields. In order to protect themselves, plants express a wide array of defense proteins such as ribosome-inactivating proteins (RIPs). This study shows that the expression of 'OsRIP1' is highly induced in rice plants infested with N. lugens, with transcript levels more than 100-fold upregulated in infested plants compared to non-infested plants. Furthermore, recombinant OsRIP1 was toxic for brown planthoppers when administered through liquid artificial diet. OsRIP1 inactivated insect ribosomes in vitro, suggesting that its toxicity relates to the enzymatic activity of OsRIP1. Over-expression of OsRIP1 in transgenic rice plants did not affect the performance of insects reared on these plants, most likely due to insufficient concentrations of OsRIP1 in the phloem. The data obtained in this research indicate that OsRIP1 can play a role in plant defense against herbivorous insects.


Assuntos
Hemípteros/efeitos dos fármacos , Oryza/química , Compostos Fitoquímicos/farmacologia , Saporinas/metabolismo , Animais , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Saporinas/química , Saporinas/isolamento & purificação
19.
Pharm Res ; 37(1): 16, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873810

RESUMO

PURPOSE: The aim of this work was to develop a quantitative, flow cytometric method for tracking the endolysosomal escape of a fluorescently labelled saporin toxin. METHODS: Flow cytometric measurements of fluorescent pulse width and height were used to track the endocytic uptake into Daudi cells of a fluorescently labelled saporin toxin and the saporin based immunotoxin, OKT10-SAP. Subsequently, measurement of changes in pulse width were used to investigate the effect of a triterpenoid saponin on the endolysosomal escape of internalised toxin into the cytosol. Live cell confocal microscopy was used to validate the flow cytometry data. RESULTS: Increased endolysosomal escape of saporin and OKT10-SAP was observed by confocal microscopy in cells treated with saponin. Fluorescent pulse width measurements were also able to detect and quantify escape more sensitively than confocal microscopy. Saponin induced endolysosomal escape could be abrogated by treatment with chloroquine, an inhibitor of endolysosomal acidification. Chloroquine abrogation of escape was also mirrored by a concomitant abrogation of cytotoxicity. CONCLUSIONS: Poor endolysosomal escape is often a rate limiting step for the cytosolic delivery of protein toxins and other macromolecules. Pulse width analysis offers a simple method to semi-quantify the endolysosomal escape of this and similar molecules into the cytosol.


Assuntos
Antineoplásicos/farmacologia , Citosol/metabolismo , Endossomos/metabolismo , Citometria de Fluxo/métodos , Imunoglobulina G/farmacologia , Toxinas Biológicas/farmacologia , Antineoplásicos/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular , Endocitose , Humanos , Imunoglobulina G/química , Imunotoxinas/metabolismo , Lisossomos/metabolismo , Saponinas/química , Saporinas/metabolismo , Transdução de Sinais , Toxinas Biológicas/química , Triterpenos/química
20.
Plant Sci ; 287: 110170, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31481192

RESUMO

Protein ubiquitination is a major post-translational modification important for diverse biological processes. In wheat (Triticum aestivum) and Arabidopsis thaliana, STRESS-ASSOCIATED PROTEIN 5 (SAP5) is involved in drought tolerance, acting as an E3 ubiquitin ligase to target DRIP and MBP-1 for degradation. To identify further target proteins of SAP5, we implemented two independent approaches in this work. We used ubiquitylome capture with a di-Gly-Lys antibody-based peptide enrichment and affinity purification with a polyubiquitin antibody coupled with mass spectrometry to elucidate the SAP5-dependent ubiquitylation of its target proteins in response to osmotic stress. Wild type or TaSAP5-overexpressing Arabidopsis line, which was more tolerant to osmotic stress according to our previous study, were used here. We identified HSP90C (chloroplast heat shock protein 90) as a substrate of TaSAP5. Further biochemical experiments indicated that TaSAP5 interacts with HSP90C and mediates its degradation by the 26S proteasome. Our work also demonstrates that ubiquitylome profiling is an effective approach to search for substrates of the TaSAP5 E3 ubiquitin ligase when heterologously expressed in Arabidopsis.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Plantas/metabolismo , Saporinas/metabolismo , Triticum/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis , Eletroforese em Gel Bidimensional , Metabolômica , Plantas Geneticamente Modificadas , Triticum/enzimologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...